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Abstract. New mllecci+,e excitations of the inhomogeneous hvo-dimensional (U)) electron 
system-inter-edge magnetoplasmons (1EMP)-are predicted. IEMP propagate along the 
boundary of two contacting 2~ regions with different conductivities. The edge mag- 
netoplasmon propagating along the outer edge of a 2D layer is a special case of IEMP. Both 
the two half-planesand the discgeometryare considered. Two branchesofthelEMPspectrum 
are found. The upper branch with frequency larger than the cyclotron frequency w, decays 
even in the collisionless limit on account of the emission of the 'bulk' 2D magnetoplasmons 
into the region of the 2D layer with the smaller electron density. The frequency of the lower 
IEMP branch is smaller than w.: its damping is very small in strong magnetic fields. In 
quantizing magnetic fields B the frequency and damping of the low-frequency IEMP mode 
oscillate with B. It is shown that the cyclotron resonance splitting In inhomogeneous 2D 
electron systems can result from the strong ?upling between the IEMP and the cyclotron 
resonance branches. Recent experimental data are discussed. 

1. Introduction 

In recent years there have been considerable efforts to investigate the collective exci- 
tations in low-dimensional electron systems in semiconductor microstructures [1-8]; for 
a short review see also [9]. Several modes of the cyclotron resonance, bulk mag- 
netoplasmon and edge magnetoplasmon types have been observed in the far-infrared 
(FIR) excitation spectrum in systems of quantum wires [2,3], quantum dots [l, 2,4,5] 
and antidots [6,7]. At high magnetic fields B the frequencies of the magnetoplasmon- 
like and the cyclotron-resonance-like modes increase with Band approach the cyclotron 
frequency w,. At low magnetic fields the magnetoplasmon-like mode exhibits positive 
B dispersion in dots and negative B dispersion in antidots. The low-frequency edge-like 
mode decreases in frequency with increasing field at high B. In the system of antidots 
the low-frequency mode approaches the cyclotron frequency at small B. The spectrum 
of these modes depends characteristically on the sizes of a system. 

The characteristic feature of the edge magnetoplasmons is their small damping at 
high magnetic fields. It has been shown both theoretically [lo] and experimentally (11- 
141 (for a review see, e.g., [15]) that at wcx P 1 the edge-magnetoplasmon damping is 
smallnotonlyinthecollisionlesslimitwz S 1 butalsoatwr < 1 (heresisthemomentum 
relaxation time). This circumstance makes it possible to observe these modes in semi- 
conductor structuresinthe microwaveand radiofrequency ranges [12,13]. Theexistence 
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of low-frequency weakly damped collective excitations in two-dimensional (2D) electron 
systems at strong magnetic fields allows one to investigate the dynamic properties of 2D 
systems in the quantum Hall Effect regime. 

In the present paper we predict the new low-frequency collective excitations in 
inhomogenous 2~ electron systems. In contrast with the edge magnetoplasmons propa- 
gating along the outer edge of the ZD system, these waves propagate inside the inhom- 
ogeneous 2~ layer along the boundary of two contacting regions with different con- 
ductivities. They can be called ‘inter-edge magnetoplasmons’ (IEMP) by analogy with 
interface magnetoplasmons propagating along the boundary of two plasmas in three 
dimensions (3D) (for a review see, e.g., 1161). An inhomogeneous 2D electron system 
with a step-like density profile can be realized artificially, for example using a composite 
gate electrode or a persistent photoeffect. Probably, an analogous situation is realized 
also in thenominally homogeneous2Dsystem under the influence of long-range impurity 
potential fluctuations. The IEMP properties have not been investigated till now. Below, 
the theoretical analysis of IEMP is presented. 

In section 2 we briefly outline the properties of interface magnetoplasmons in an 
inhomogeneous 3~ plasma. A phenomenological theory of IEMP in inhomogeneous 2D 
electron systems is given in section 3. The results of subsections 3.2-3.6 are devoted to 
the IEMP propagating along a linear boundary of two half-planes. They are based on the 
rigorous solution of the problem, obtained in [lo]. Subsection 3.7 is devoted to an 
investigation Of IEMP in the case of a single disc-shaped inhomogeneity. In section 4 the 
results obtained are discussed in connection with recent experiments. 
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2. Interface magnetoplasmons in three dimensions 

Let the right (left) half-space x > 0 (x < 0) be occupied by a plasma with dielelectric 
permittivity ~ ; # ( w )  ( E ; ~ ( W ) )  and let magnetic field B = (O,O, B )  be parallel to the 
interface. An interface magnetoplasmon wavevector q = (0, qy, 0) is assumed to be 
perpendicular to the magnetic field B (Voigt geometry). The retardation effects as well 
as the spatial dispersion of dielectric permittivity ~ ~ ~ ( 0 )  are neglected. Supposing that 
the potential of the wave has the form q ( r )  = q(x) exp(iq,y - iwr), one can find the 
spectrum of the interface magnetoplasmons from the following equation: 

C , h p ( o , X ) V p P ) ( ~ ) J  = 0 (1) 

where E,p(W,X) = Ebp(W)e(x) -k E b p ( W ) e ( - X ) ,  E,(W) = Eyy(W), E,).(O) = --Eyx(W) and 
B(x)isthestepfunction,i.e. e ( x )  = 1 whenx > OandB(x) = Owhenx < 0.Thesolution 
of equation (1) gives the dispersion equation of an interface magnetoplasmon in the 
Voigt geometry: 

E:,(w) - iE&(w) sgn(q,) + EL(w) + ie&(o) sgn(q,) = 0. (2) 
Now we use the collisionless Drude formulae for E ~ & O )  and restrict ourselves to the 

case of two plasmas with the same charge sign and effective mass m* of carriers: 

&S((U) = K ( l  - w:,,/(w2 - w : ) )  

E:;’(w) = Kiw$w,/w(w* - of). 
(3) 

Here. w, = eB/ni”cisthe cyclotron frequency, U,(, ,  = (4xn,,,,e2,”’h-)’ ’andn,, ,are the 
plasma frequency and the electron density in the right (refit) half-space plasma. e is the 



Inter-edge magnetoplasmons in ZD systems 6525 

electron charge, cis the velocity of light and K is the background dielectric permittivity, 
which is supposed to be independent of x .  After the substitution of equation (3) into 
equation (2) ,  the dispersion equation assumes the form 

1 - w:/2w(w + Qc) - w: /2w(0  - Q,) = 0 (4) 

where Q, = w,sgn(q,). As was to be expected, the interface magnetoplasmon frequency 
is an odd function of the wavevector qy and magnetic field B ,  and the commutation of 
the indices ‘1’ and ‘1’ reverses the sign of the frequency. 

The w(Q,) dependence is shown in figure 1 1151 in the case 0: > w:. There are two 
branches of the w(Q,) curve at positive values of w .  The upper branch 0, (Q,) lies 

bulk 
magnetoplasmon branches (the lower and upper chain curves). The frequency of the 
lower branch, wlaw, is smaller than 1 w,I. The wlow(QJ curve takes its maximum value 
0% = ( w ,  - wJ/2  at Q, = (a, + w1)/2, while the wUp(Qe) curve takes its minimum 
value w:’ = (w, + wJ/2  at Qc = (wI - w1)/2. So, the magnitude of the ‘gap’ between 
the upper and lower branches equals wf; - w z v  = al. In the special case of a weak 
inhomogeneity (la1 Q 1) the lower mode frequency vanishes while the upper mode 
wup(QJ tends to the left and right bulk magnetoplasmon frequencies. The ‘gap’ collapses 
and the B2, dependence of the interface magnetoplasmon frequency reduces to that 
shown in the inset of figure 1 in the opposite case of the surface magnetoplasmon 
waves (a,+ 0). So, the ‘gap’ arises in the interface magnetoplasmon ‘&dependence in 
consequence of the anticrossing of the surface magnetoplasmon and the cyclotron- 
resonance branches. 

Insmall magnetic fields the upper interface magnetoplasmon mode can be presented 
in the form wup(Qc) = w,(l - aQ,/Zw$) at I w,I <us, where 0, = [(U: + w:)/2]@ is the 
interface plasmon frequency at B = 0 [18], and (Y = (w: - w:) / (w:  + w : )  = (n,  - nl)/ 
(n,  + n,) is the inhomogeneity parameter (1 011 G 1). A simple expression, 

in a range between the left w = ( w i  + w : ) ” ~  and the right w = (wf + wr)ll2 4 

WIOW(QC)  = aw:Q,/(w: + w : )  (5 )  

W ~ ( w m * / [ 1  + ( 0 ~ 4 2 1 3  1 (6) 

which is applicable under the condition 

can beobtained for thelower interface magnetoplasmon mode. As followsfrom equation 
(6),expression(5)isvalidatanyvaluesof o/inbothweak(lw,/w,l Q l)andstrong(IwJ 
w,/ S- 1) magnetic fields as well as at any magnetic field if 4n2/27 Q 1. 

Damping of the interface magnetoplasmons is conditioned by the charge carrier 
collisions with lattice imperfections. In the momentum-relaxation-time approximation, 
equation ( 5 )  can be generalized as follows: 

wlO,(Q,) = [w:/(w: + ~ 3 1  (U% - i b ) .  

Thus, the low-frequency interface magnetoplasmon is a weakly damped mode in the 
limit of strong magnetic fields (I aw,tl %- 1). 

It is to be emphasized that equation (4) describes the collective excitation spectrum. 
In addition, the one-particle cyclotron resonance w = w,can be observed in the absorp- 
tion spectra of the system involved. The high-5 branch of the upper interface m a g  
netoplasmon mode and the low-B branch of the lower mode are very close to the 
cyclotron resonance mode if w , Q  w,. Hence, a ‘split’ cyclotron resonance can be 
observed in the absorption spectra of strongly inhomogeneous (wI Q w,) systems. It will 
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F i r e  2. The charge, electric field E and current j 
distributionsol the fundamental (dipolar) inter-edge 
magnetoplasmon mode in a disc-shaped inhom- 
ogeneity at the first (a) and at subsequent (b) 
moments of time. For the details, see the text. 

interface magnetoplasmon frequency in an inhom- 
ogeneous ID plasma, The broken straight lints show 
the cyclotron resonance w = I wcl; the upper (lower) 
chain curve is the bulk magnetoplasmon in the right 
(left) half-space w = (0: t w:,,)'@; the upper and 
lower full cuwes are the upper and lower branches 
of the interface magnetoplasmon. Inset: the same 
dependences in the case of the surface magneto- 
plasmons (n,  = 0, n = 1).  Note the disappearance of 
the 'gap' between the upper and lower interface mag- 
netoplasmon branches. 

be shown below that similar features can also be observed in the inhomogeneous ZD 
systems. 

3. Inter-edge magnetoplasmons in two dimensions 

3.1. Qualitatioe considerations 

By analogy with the case of edge magnetoplasmons [IO, 151, the origin of IEMP can 
be explained in the following way. Consider, for example, a ZD electron layer with 
inhomogeneous concentration in the form of a disc. The electron density is assumed 
to be equal to n: at r > R and n: at r < R. Let us consider the case when the charge- 
density fluctuation arises in a narrow strip near the boundary of the disc (figure 2(a)). 
As a consequence, an electric dipolar field E arises inside and outside the disc. In 
the presence of a strong perpendicular magnetic field B ,  the electrons begin to drift 
in the direction perpendicular to the vectors E and B.  The electric current inside and 
outside the disc is proportional to the Hall conductivities ob and U;* respectively. If 
duYx = ub - u ; ~  # 0, the electrons will accumulate near the boundary of the inhom- 
ogeneity and, as a consequence, the initial fluctuation will shift (figure 2(6)). Then, this 
process repeats itself, resulting in the rotation of the initial charge-density distribution. 
The charge accumulation rate and, hence, the i ~ ~ ~ f r e q u e n c y  w are proportional to do, 
and inversely proportional to the disc radius R. At high B the IEMP frequency is proved 
to be small compared with the cyclotron one. With decreasing B the IEMP branch 
increases in frequency. By analogy with the 3 0  case, a 'gap' opens in the Qc dependence 
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of the IEMP frequency at a certain magnetic field, owing to the anticrossing of the edge- 
like branch and the cyclotron-resonance branch. It is to be emphasized that a similar 
anticrossing in the system of antidots (i.e. at nb = 0) has been interpreted in [7,9] in 
terms of the parameter rc/R, where r, is the cyclotron radius. In the case of IEMP, the 
anticrossing of these branches has another origin. The value of the 'gap' is proportional 
to min{ni, n:}  # 0 and does not vanish in either the two half-planes geometry ( R - t  m) 

or the local approximation (rC+ 0); see below. 
The dissipative decay of IEMP charge is conditioned by the diagonal current, which 

is proportional to some average value of = Re urx. Since the charge accumulation 
rate is proportional to &U,, the IEMP damping is small under the condition 160~~1% 
u t .  It will be argued below that the upper IEMP branch has a strong non-dissipative 
damping in addition to the dissipative one. This specific effect takes place in two 
dimensions only. 

Besides the lowest (dipolar) IEMP mode, there are higher (multipolar) IEMP modes 
in the ZD disc-like inhomogeneity. In the limit of infinite radius of the disc, we obtain an 
IEMP with wavevector q,, propagating along the boundary of two contacting ?D half- 
planes. 

3.2. Basic formulation: two half-planes geometry 

Let us consider the ZD electron layer confined in the plane z = 0. In perpendicular 
magnetic field B = (0, 0, B)  the local conductivity tensor of the system is 

o&w9 = [%&9e(x) + o6,a(w)e(-x)l6(4 (7) 
where {CY, ,B} = In, y} ,  uzx(w) = u,,~('yy(w), ux,,(w) = -uyx(x(w) and U,, = 0. The spatial dis- 
persionofthe conductivity tensor, indudingadiffusioncomponent ofthe current, aswell 
as the retardation effects are neglected. The dielectric permittivity of the surrounding 
mediumisassumedtobeindependentofnandequal toKIatz > Oandx,atr < 0. Then 
the system of equations for the IEMP potential p? and charge density p can be written as 

div[K(z) grad p?] = -4xp ap/at + div j = 0 jm = -uep(wr)agv. (8) 
The general solution of the system (8) obtained by the Wiener-Hopf technique along 
with the detailed investigation of the special case of the edge magnetoplasmons 
(&(w) = 0) have been presented in [IO]. In the general case (u;#(w) # 0), the IEMP 
dispersion equation is as follows: 

where qy is the IEMP wavevector, 6uep = U& - uLp, and E&, w )  are the effective 
dielectric permittivities of the right and left ZD layers: 

&,~i(q,  W )  K + q27C'iU$ ( O ) / W  E K(l + qlr,i). (10) 
Here K = ( K ~  + ~ ~ ) / 2 .  The length I = 2niu,(o)/wKdetermines the scale of the spatial 
dispersion of the dielectric function &(q, w ) .  Its real (imaginary) part is related to the 
imaginary (real) part of the diagonal conductivity of a 2D layer, uJw) = u t ( w )  + 
id:, (0). 

Equation (9) is valid not only in the case of an isolated inhomogeneous ZD layer 
confined in the plane z = 0, but also in the cases of heterostructures, metal-insulator- 
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semiconductor (MIS) structures. multilayer superlattices, 2D electron systems on the 
liquid helium surface. etc., provided that the appropriate expressions for E,,,(Q, w )  
are used [lo]. The dispersion equation (2) for interface magnetoplasmons in three 
dimensions can also be obtained from equation (9) by the substitution of dielectric 
permittivities 

S A  Mikhailov and V A Voikov 

e $ ( w )  = ~6,o + 4niu$(w)/w 

of right and left 3D plasmas into equation (9). In the present paper we restrict ourselves 
to the case of an isolated inhomogeneous 2~ layer with the dielectric permittivities of 
equation (10). 

Now, let us analyse the EMP dispersion equation (9). 

3.3. Inter-edge plasmons at B = 0 

In the absence of a magnetic field, the dispersion equation (9) assumes the form 

where the collisionless Drude model is used for us(o), i.e. uxx(w) = in,e2/m*w, n, is 
the surface electron density and 

is the ZD plasmon frequency in the right (left) half-plane. 

i.e. 
In the special case of the edge plasmons (n: = 0), equation (11) has a single solution, 

w 2 ( q y )  = w:(o, q d / v  (13) 

where q = qa = 1.21. . . [19]. Thedampingofthismode equalszeroin the collisionless 
approximation. Contrary to the cases of interface plasmons in a 3D plasma and edge 
plasmons in a 2D layer, equation (11) has no real solutions at n: # 0, i.e. there are no 
undamped inter-edge plasmons at B = 0 in the collisionless limit in a ZD layer, This 
unexpected result can be explained in the following way. 

By analogy with the 3D case (see figure 1) the inter-edge plasmon frequency w,(qy) 
is expected to lie in the frequency range 

wd0,qy)  < d q , )  < wr(O,q,). 

Were it the case. the inter-edge plasmon would emit ‘buIk‘zD plasmons into the left half- 
plane (with the smaller electron density, n: < @). This emissive process is possible, 
because the proper energy conservation law 

ws(qy)  = w l k v  9 Y )  (14) 

can be fulfilled owing to an additional wavevector qx. Hence, the B = 0 inter-edge 
plasmon has a finite non-dissipative Landau-like damping even in the collisionless limit. 
This damping is due to ZD ‘bulk’ plasmon emission into the half-plane with the smaller 
electron density. This effect is absent in the 3D case owing to the dispersionless spectrum 
of 3D plasmons. 
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Nevertheless, the emissive damping of the inter-edge plasmons is small provided 
n: Q n:. In this limit the inter-edge plasmon spectrum has the form (13), where 

7 = qO[l  - ( n i / n [ ) ( q i  - I)''z/tan-' (qb - I ) ' '~  (In (2n:/qon:) + 1 - in)] 

and n:/n: Q 1 (collision damping is neglected here). The wavevector qx defined by 
equation(14)islargecompared withIq,linthislimit: lqy/qzI = qon:/n: Q l.Therefore, 
'bulk'zoplasmonsare emitted almost perpendicularly to the 'edge'ofthe system. Owing 
to thecondition lqy/qxl 4 1, the overlapofthe eigenpotentialsofthe inter-edge plasmon 
and the left half-plane 'bulk' plasmon is small, and the efficiency of the inter-edge 
plasmon energy leakage is slight. Hence, just the condition Iqy/qzl < 1 results in the 
weak emissive damping of E = 0 inter-edge plasmons at n: Q n:. 

The inter-edge plasmon damping increases with n i .  Under the weak inhomogeneity 
conditions (ICY Q l), a E = 0 inter-edge plasmon does not exist. 

3.4. Inter-edge magnetoplusmom: upper mode 

In the presence of a finite magnetic field there are two branches of IEMP, the upper 
branch, wup(qy), lying in the frequency range 

[o:(o,q,) + wf11'2 < o.p(qy) < [o:(o,q,) + o:l"* 

(i.e. inside the 'bulk' magnetoplasmon continuum of the left 2D region), and the lower 
branch, with frequency smaller than 1 w,I. The upper mode decays on account of the 
emission of ZD 'bulk' magnetoplasmons into the half-plane with the smaller electron 
density. Onecan show that the condition n: < n: isinsufficient for the small dampingof 
the upper IEMP branch. In addition, the magnetic field should be small enough: I @,I < 
4 0 ,  qy). Then wiP(9,) = w:(O, q Y h  where 

The overlap of the eigenpotentials of the inter-edge magnetoplasmon and the left half- 
plane 'bulk' magnetoplasmon increases with both w, and n:.  Hence, the IEMP damping 
increases and the w,(q,) mode disappears. Nevertheless, the existence of this mode 
should be taken into account in calculating the response of inhomogeneous w electron 
systems to an external electromagnetic field. 

So, the upper iEMP branch damping in the two half-planes geometry is small only in 
thenarrowrangeofparameters: ni dn:andIw,I Q o,(O,q,). Therefore,thesuhsequent 
subsections will be devoted to the detailed analysis of the lower IEMP mode only. The 
emissive damping of the lower IEMP mode is absent and its collision damping is small at 
strong magnetic fields. 
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Figure3. The wavevector and magnetic field dependences olthe lower IEMP mode frequency 
in the two hall-planes geometry: ( a )  the dimensionless frequency wL,/o,  versus the dimen- 
sionless waxvector o : ( q , ) / m :  = [n(nk + n:)e2/m*xw&, at B = const; (b) the dimen- 
sionless frequency o$./w,(q,) versus the dimensionless cyclotron frequency o,/o,(q,) at 
qy = const. The chain line in the latter is the cyclotron resonance. 

3.5. Inter-edge magnetoplasmons: lower mode 

First of all we consider the properties of the low-frequency IEMP mode using the Drude 
model for uail(w). In the collisionless limit (T,, zI-+ CO), the dispersion equation (9) can 
be written in the form 

w = Qc tanh [( l /n)  F(w:(O, q Y ) / ( d  - a’)) - (1/4 F(w?(O, q,)/(wt - w ’ ) ) ]  (15) 
where 

So. the frequency of the lower IEMP mode can be presented in the following forms. In 
the long-wavelength limit, i.e. w,(O, qy) Q I w,I, we have 

(17) 
Here e = exp(1) = 2.718. . ., and 

Thevaluesof CY= (n: - ni)/(n: + n:)  and w l ( q y )  = [w:(O, q,.) + w:(O, qv)]/2 have the 
same meaning as in section 2. In the short-wavelength limit, i.e. w,(O, qy)  9 1 ~ ~ 1 ,  one 
can write 

y ( f f )  = (1 - CY)(1-4/2*/(1 + c)(’+4/h, 

The wavevector and magnetic field dependences of w$,(q,) are shown in figure 3 
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The collision damping wrow(qy) of the lower IEMP mode is small in strong magnetic 
1 (for the sake of simplicity we suppose here that z, = tI = z). In fields, I u,t I + I 

the limit of large wavevectors, w,(O, qy) S IuJ, we have 

w d q , )  w h ( q j )  - iw%dqY) = mac - i/r wr(0, qy)* I%l. (19) 

In the long-wavelength limit, w,(O, q,.) Q lw,J, the dispersion equation assumes the 
form 

w = [(U: - wf)/zQ,] In (2ewfy(a)/w:(1 + i /ot)) .  

Now let us consider two special cases. When w,(O, qy) Q 1 ~ ~ 1 ,  but Iulow(qy)It %- 1, 
the ~EMPfrequency u;o,(qy) is determined, as before, by equation (17). while the IEMP 
damping o;ow(qy) is 

Inthelong-wavelength, w,(O, qy) Q Iw,l,andlow-frequency,Iw,,,(q,)la Q l,limits, the 
IEMP frequency and damping are defined by the following expression: 

~I&,) = [(U: - w:)/ns,If((4e/n)lcuw,tl~(m)) - ilw? - d/ /21wc l .  (21) 

Here, the functionf(x) is the solution of the equationf(x) = In[xf(x)]. In the limit x SI, 
it can be approximated by the limit of the sequence f&), 

f b )  = lim f A x )  wherefo(x) = lnx,fetl(x) = In[xf,,(x)]. (22) n-" 

Note that, under theseconditions, thelEMPdampingdoesnot dependon themomentum 
relaxation time z (compare with the analogous result for the edge magnetoplasmon 
theory [IO]). 

In all the cases considered the IEMP damping w;b,(qi) is small compared with the 
IEMpfrequency ~ { ~ ~ ( q , ) .  In small magnetic fields, Iew,tI S 1, the weakly damped low- 
frequency IEMP mode does not exist. Thus, the IEMP is a well defined elementary 
excitation of an inhomogeneouszn electron system in the limit of strong magnetic fields, 
I0,zI z=. 1 mj-1 > 1. 

3.6. Low-frequency IEMP in quantizing magneticfields 
In the most important case of quantizing magnetic fields, the Drude model is inappli- 
cable. Since the results obtained above describe the behaviour of IEMP in quantizing 
magnetic fields only qualitatively, it is desirable to ascertain the general EMP properties 
without using any model for uep(o). We do this below in the low-frequency limit, using 
the general properties of the conductivity tensor only. 
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However, figure 4 demonstrates that the approximate equality G(z ,  a)  = G(z ,  0) is 
proved to be really valid at any values of / a /  .s 1. It is seen that, even at /a1 = 1, the 
relative error [G(z ,  a) - G(z ,  O)]/G(z, a)  does not exceed 0.085 at any z and tends to 
zero at z 9 1 and z 9 1. So. the dispersion equation for the low-frequency IEMP mode 
(including the special case of the edge magnetoplasmons, I a1 = 1) can be approximated 
with good accuracy by the expression 

w = [26q,(w)qy/Kl F'(lq, IT(". (26) 
To &!ziin?!x !Emdispersion law in more detail, we consider the low-frequency limit 

is some inherent characteristic frequency of the ZD system, /wjow(qy)l 9 wo. Here 

- 

2 0  I 
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below which the frequency dispersion of the conductivity tensor uwo(w) is negligible. 
Since U ' ~ ~ ( O )  = Re umo(w) is an even function, and U:@(@) = Im umo(w) is an odd 
function of the frequency, one can write in the low-frequency limit (w Q wo) 
ubp(o) = uko (0) and uLfi(w)/w = constant,'and'therefore 

uxr(w) = &(O) (1 - iwa*) uxy(w)  = %y(o). (27) 

The phenomenological parameter z*  with the dimension of time is introduced here 
formally. The real part I' of the length I = I' + iP'is frequency-independent and positive 
in this limit, while its imaginary part, I", is inversely proportional tow: 

f' = -[2nUL(w)/wK],,o = 2 n ~ T ~ ~ ( o ) a * / K  1" = h U L x ( 0 ) / U K .  

In the approach involved (see also [lo]) the values of uh(O), u,(O), t*, l ' ,  etc., are 
supposed to be the phenomenological parameters that should be determined from an 
experiment?, 

Now, supposing that 16uxy(0)1 %- &(O) and w Q wo, one can find the following 
results. In the short-wavelength limit Iq,T'I %- 1, the IEMP frequency and damping do 
not depend on the absolute value of qy: 

wl,(qv) = [n6uy,(o) sgn q y / ~ I ) ]  - i/t*. 

wloW(qy) = 1 2 ~ y 6 ~ y ~ ( 0 ) / ~ I ~ n 2 / I q y l I '  - i(s* 1n2/lqyIp)-'. 

(28) 
Under the conditions 1qvp I Q  1 and lmlow(qy)z* I S 1, which are compatible with each 
other at 16uxy(0)1 > uh(O), it can be found that 

(29) 
Finally, in the long-wavelength, Iqyf' I Q 1, and low-frequency, [ wlow(qy)t* 1 Q 1, limits, 
we have 

%&,) = [ 2 q y ~ ~ y x ( o ) / K l f ( 2 1  60,m //JCoL(O)) - inlqy6uyx(0)l/~ (30) 
where the function f(x) is defined by equation (22).  As follows from equations (28)- 
(30), the IEMP frequency and damping oscillate with B in quantizing magnetic fields. 
Under certainconditions (see, e.g., equation (30)) the IEMPdampingcan take quantized 
values in the quantum Hall effect regime. The IEMP damping is small compared with the 
IEMP frequency in all the cases considered (equations (28)-(30)). 

An analysis of the spatial distribution of the field and the charge density of IEMP 
shows that the IEMP field is localized near the inhomogeneity boundary at a scale smaller 
than 1qY/-l. The charge-density localization length is of the order of (qn) ln(2/lqyl/) at 
lqyll 4 1, and of the order of 1qYl-' at lqyll S 1 .  At large 1x1 the behaviour of the 
potential &) is described by the asymptotes q ( x )  CK Ko(lqyxl) at Iqyfl Q 1 and 
q ( x )  exp(-/qyxI) at lqyrl %- 1 (here Ko(r)  is the Macdonald function). 

3.7. Low-frequency IEMP in the disc geometry 

Since the results of preceding subsections show that the damping of the upper IEMP 
mode is rather strong, we restrict ourselves to the consideration of the low-frequency 
t Under the conditions of applicability of the Drude model, the length I' = 2m,e'/m'rcw: = e2u/rhw, 
determinesthedistanceoverwhichthecyclotronenergyhw,becomesequalto theenergyofelectron-electron 
interaction (here 1 0  + i/r I 4 wc,  Y = 2nnJ.' is the Landau lcvel filling factor, A 1s the magnetic length). The 
time c* coincides with the momentum relaxation time r in the Drude model. 
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(w < Iw,l) mode here. The IEMP spectrum can be found from the system of equations 
(8) with the local conductivity tensor 

S A Mikhailoo and V A Volkou 

oWB(o, r) = [o&&P(r - R )  + oL&+W - r ) l 6 ( ~ )  (31) 
(the local theory is applicable under the condition r, 4 R). Now, the Wiener-Hopf 
technique is powerless. We propose the following prcedure to solve the problem$. 

First, we extract an r-independent term from the local diagonal conductivity: 

.,(U, r) = @ ( w )  + 6u,(w, r ) .  

q(r )  exp(-iwt), we write the system (8) in the form 
The magnitude of U%( will be defined more exactly below. Then, supposing that q(r ,  
I )  

div[K grad q(r, z ) ]  + [4niu$'(w)/w] 6(z)A2q(r, 0) = - ( 4 7 4 ~ )  S(z)D(r) (32) 
where A2 is the ZD Laplacian, the function D(r) is 

= a. [6oU(w,  r)&v(r, 0)l- Amda,oyAw, r ) I [W(r .  0)l 
and 
-Ayx = 1). Carrying out the Fourier transformation of equation (32), we find that 

is the antisymmetric tensor of the second rank (i.e. A, = Ay) = 0 and Axy = 

d 3 ,  z = 0) = [ 2 d w . v  (1 + 4Lff)l D(q) 
where q(q, z = 0) and D(q) are the Fourier transforms of the functions p ( r ,  0) and D(r) 
respectively, and q = (qx, qy) is a ZD vector. The effective length lee is related to the 
effective diagonal conductivity flz by the usual expression: 

Iett(w) = hiu::(w)/wK 
The inverse Founer transformation then results in the following integral equation for 
the IEMP potential q(r) = q(r ,  z = 0): 

Up to now we have not taken into account the symmetry of the inhomogeneity. Now, 
assuming that am8(w, r) depends on the absolute value of the vector r, i.e. U,~(W. r) = 
ue6(w, r ) ,  and substituting q(r) = p.(r) exp(in0) into equation (33), we find the fol- 
lowing integral equation for qn(r) :  

The kernel Ln(r, r') is defined by 

andJ, is the Bessel function of the nth order. 
i An application of this procedure to the exactly solvable two half-planes IEMP problem gives rise to the 
dispersion law in the form of equation (26). 
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The integral equation (34) is completely equivalent to the system of equations (8). 
It can be solved by the method of successive approximations. As the first step, we omit 
the second term and obtain the simple analytic expression for the IEMP potential: 

q . ( r )  = ( z d 4  - o~,)~.(R)L&, RI. (35) 

The function Le(r, R) contains the uncertain length le@ It can be determined now from 
the conditionofcontinuityofthenormalcomponentofthecurrent at thediscboundary§: 

j r  = [-uxx aq. (r ) /ar  - oxy (in/.) pn(r)];:$?l = 0. (36) 

Equations (35) and (36) yield the following equation for leH: 

where f =  ( I ,  + ie)/2 is the average length and (Y = ( I ,  - Ii)/(fe + 4) is the inhomogeneity 
parameter. It can be shown that the corrections to the simple result left = Tare small at 
any values of lnieff/R I if 1011 1, as well as at any values of 1 a1 if I nlJR I 4 1 or lnleH/ 
RI % 1. Indeed, let us define a new function, 

with the following asymptotes: 

a t z / l n l e 1  

at z/ lnl% 1. 
(39) 

1 ~ 2  in I ) - m n z  - 114) 1 
(1/.zr) IWw - Y(lnl + 1/2) + W ) l  i 

i 

S"(4 = 

Here Y is the digamma function. Equation (37) can be rewritten in terms of S.(z): 

VR = (zeff/R)/[l - dR/~df)Sh(R/~ef f ) ]~  (40) 

Since the asymptotes of zSL(z) have the form 

- z / [n(n2 - 1/4)] 

- ( l / m )  [in(22) - Y ( l n l +  1/29 - 1 + 0(1)] 

at z / I n  Q 1 

a t z / \ n I + l  
(41) 2s; (2 )  = 

the approximate equality leH = Tis really proved to be valid under the conditions men- 
tioned above. It can be shown also that the corrections to expression (35), conditioned 
by the second step of the successive approximation method, are small under the same 
conditions. 

§ As shown in 1151. this condition has to be fulfilled in two dimensions. Otherwise, the presence o f a  a(r  - 
R)6(z) term in the IEMP charge distribution would lead to a logarithmic divergence of the IEMP potential and 
energy. 
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Now, let us return to expression (35) for the IEMP potential. Substituting r = R into 
equation (35), we obtain the dispersion equation for IEMP in a disc-shaped inhom- 
ogeneity: 

One can write this equation in terms of the function S&): 

0, = Pnn(o;, - uL)/&l Sn(R/Ld. (43) 
Usingequations (43) and (39) we find the r ~ ~ ~ d i s p e r s i o n  equation in the limitingcases 
I&/R I 9 1 and I nleft/R I Q 1 respectively: 

w. = ~ ( 0 ; ~  - U;.*) sgn n / d e H  at I nlefi/R I s. 1 

w ,  = [2(u:, - u J x ) n / ~ R ]  (ln(2R/I.l1) - Y( ln l  + 1/2)) at Inl& Q 1. 

(44) 

(45) 
Now,let uscompare theseresultswith thoseobtainedin thetwohalf-planesgeometry 

(equations (28) and (25)). Taking into account the asymptote Y(ln1 + 1/2) = l n l n  + 
O(n-2)at In1 %- l,itcanbeseenthatequations(44)and(45)coincidewiththeappropriate 
expressions, defined by equations (26) and (B),  provided qv is replaced by qy = n/R. 
This simple ‘quantization rule’ is really valid down to In1 = 1 because Y(3/2) = 0.036 Q 
1. This conclusion is quite natural, because the IEMP charge and field are strongly 

localized near the boundary line. Obviously, this ‘quantization rule’ can be generalized 
to the inhomogeneities of more complex forms, such as square, rectangle, etc.: the IEMP 
dispersion law can be found from the appropriate formulae of the two half-planes IEMP 
problem by the substitution 

qy = 2 n n / P  (46) 
where Pis  the perimeter of the inhomogeneity region. 

It should be mentioned that the disc-shaped IEMP modes (see figure 2) have an 
additional radiative damping in comparison with the IEMP in the two half-planes 
geometry. It has been estimated in [ZO] in the case of edge magnetoplasmons. Under 
typical expenmental conditions, the radiative damping of IEMP modes is sufficiently 
small and decreases with increasing In].  

4. Discussion and conclusions 

We have investigated new magnetoplasma waves, viz. inter-edge magnetoplasmons, 
propagating in an inhomogeneous ZD system along the boundary of two contacting 
regions with different conductivities. In strong magnetic fields these waves are well 
defined low-frequency excitations localized near theinhomogeneity boundary. The edge 
and inter-edge magnetoplasmons can be used as a probe of the edge and ‘inter-edge’ 
electron states near the external and ‘internal’ boundaries. The strong coupling of inter- 
edge magnetoplasmons to the cyclotron resonance (see figure 3) gives rise to cyclotron 
resonance splitting. This is not the case for the edge magnetoplasmons. The results 
obtained above are applicable to the casesof both the two half-planesgeometry and the 
single disc-shaped inhomogeneity. 

We now discuss the peculiarities of the experimental observation of IEMP in the 
system Of 2D discs with electron density n: immersed into the ?D background layer with 
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density n:. This structure will be referred to as a system of dots (antidots) if n: = 0 
( n i  =O)andasadot-likesystem(antid0t-likesystem)ifO< n: < ni(O<ni <n:).First 
of all, it is interesting to compare the electromagnetic response of the system of isolated 
dots (n: = 0) and the system with n: # 0. In both systems, both collective (‘bulk’ and 
edge or inter-edge magnetoplasmons) and one-particle (cyclotron) excitations exist. 
However, it is known that the one-particle cyclotron resonance is not observed in 
a system of isolated dots [1,4,5,8). This result is explained (see, e.g., [l]) by the 
depolarization effect conditioned by the screening of the external electric field by ZD 
electrons inside the disc. So, only the collective resonances are observed in those 
experiments. 

Thesituation isdifferent in thesystems with n: # 0 (dot-like orantidot-like systems). 
Then, the electric field that acts on the electrons differs from the external field only 
inside the disc and in some vicinity outside the disc. At a large distance from the disc, 
the total field that acts on the electrons coincides with the external one. Therefore, both 
collective (IEMP) and one-particle (cyclotron) resonances should be observed in the FIR 
(microwave) transmission (absorption) experiments in such systems. Since tbe IEMP 
frequency &, = ( ~ $ 2 ~  is close to the cyclotron one at 1 (YI = 1 in moderate magnetic 
fields (see equation (19)), the transmission (absorption) spectra of the electromagnetic 
wave will demonstrate two close resonances. The linewidths of both resonances are 
defined by r-’ and should be the same. 

Thus, the splitting of the cyclotron resonance line in ZD electron systems can be 
conditioned by the excitation of the IEMP propagating along the internal inhomogeneity 
boundaries in a sample. Let us consider the nominally homogeneous ZD system under 
the influence of long-range impurity potential fluctuations. In quantizing magnetic fields 
the system involved can be imagined as a dot-like or an antidot-like system with local 
regions of increased (‘lakes’) or decreased (‘hills’) electron density [21,22]. The IEMP 
modes can propagate along the perimeter of these regions. Their contribution has to be 
taken into account when the absorption (transmission) spectra are analysed. It is essen- 
tial that the IEMP frequencies are independent of the sizes of the inhomogeneity regions 
if they are small enough (see equation (19)). Taking into account the effect of excitation 
of the IEMP modes at the internal inhomogeneities of the sample will possibly shed light 
on the problem of the ‘anomalous’ cyclotron resonance in nominally homogeneous ZD 
systems (see, e.g., [22-25]). This problem needs further study. 

Recently, Liu et a1 [SI have observed the splitting of the cyclotron resonance in a 
modulation-doped GaAs/AIGaAs heterostructure with a front surface grid-gate of 
semitransparent Ti/Au. The grid-gate consisted of two orthogonal gratings of period 
d = 200 nm and linewidth 85 nm. At gate voltage V,  < -0.4 V a system of isolated 
quantum dots was formed in the ZD electron layer and the excitation spectra had 
the form typical for a system of dots [l, 4,5]. With increasing V, a lateral surface super- 
lattice regime was realized. For V, = -40 mV, the magneto-transmission spectra, 
taken with laser lines of different wavelength A,  were measured, and in the range 
151 wm < A < 192 pm the splitting of the cyclotron resonance was observed. The mag- 
netic field dependence of the split-off resonance was close to o.= a/w,I with (Y = 0.9. 
The authors were not successful in explaining the effect observed. We suppose that a 
dot-like system with 0 < n: < nk was formed in the structure under the conditions 
involved, and the split-off resonance observed in [SI was, actually, the IEMP dipolar 
mode. 

It is to be emphasized here that the direction of rotation of the IEMP dipole coincides 
mith the direction of the cyclotron rotation of electrons in antidot-like structures. On 
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the contrary, in dot-like structures the directions of rotation of the IEMP dipole and of 
the electrons are opposite. This result does not depend on the charge sign of the carriers. 
Therefore, inhomogeneity regions with increased or decreased electron density can be 
identified using an incident electromagnetic wave with clockwise and anticlockwise 
polarization. Since the dot-like structure was likely to be realized in [8], our supposition 
can be confirmed or disproved by carrying out this experiment with a circularly polarized 
incident electromagnetic wave. Also, the possibility of the observation of the IEMP 
dipolar mode in the low-frequency (w Q U,) region in the system involved should be 
pointed out. 

Finally. it is to be noted that the present local (rc/R+ 0) theory (subsection 3.7) does 
not give rise to the effect of anticrossing of the cyclotron resonance and the edge 
magnetoplasmon resonance branches in the special case of a single antidot (ni = 0, 
n: # 0). However, Kern eta1 [7] (see also [6] and [9]) have recently observed the effect 
of anticrossing of these modes in the system of antidots. There are two possible reasons 
for this discrepancy, The first one is the influence of spatial dispersion effects, controlled 
by the parameter rJR.  This explanation was in fact supposed in [7]. The other possible 
reason for the effect observed is the interaction between the antidots. We are now 
considering the problem of the electromagnetic response of a system of interacting 
antidots. Our preliminary resultsshow that the interaction between the antidots can also 
give rise to the anticrossing of excitation branches. We hope to publish these results in 
the very near future. 

S A  Mikhailoo and V A Volkov 
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